Sample random point clouds from triangle meshes.

Example: Read a triangle mesh from file and uniformly sample points

#include "geometrycentral/pointcloud/point_cloud.h"
#include "geometrycentral/pointcloud/point_position_geometry.h"
#include "geometrycentral/pointcloud/point_cloud_io.h"
#include "geometrycentral/pointcloud/point_cloud.h"
#include "geometrycentral/surface/meshio.h"

using namespace geometrycentral;
using namespace geometrycentral::surface;
using namespace geometrycentral::pointcloud;

// Load a mesh
std::unique_ptr<SurfaceMesh> mesh;
std::unique_ptr<VertexPositionGeometry> meshGeom;
std::tie(mesh, meshGeom) = loadMesh(args::get(inputFilename));

// Sample a point cloud from the mesh
std::unique_ptr<PointCloud> cloud;
PointData<Vector3> pointPos;
PointData<SurfacePoint> cloudSources;
size_t nPts = 5000;
std::tie(cloud, pointPos, cloudSources) = uniformlySamplePointsOnSurface(*mesh, *meshGeom, nPts);

// As an example, use the source points to get face normals
PointData<Vector3> normals(*cloud);
for (Point p : cloud->points()) {
  normals[p] = meshGeom->faceNormals[cloudSources[p].face];

// Construct a geometry object from the positions for subsequent calculations
PointPositionGeometry cloudGeom(*cloud, pointPos);

std::tuple<std::unique_ptr<PointCloud>, PointData<Vector3>, PointData<surface::SurfacePoint>> uniformlySamplePointsOnSurface(surface::SurfaceMesh& mesh, surface::EmbeddedGeometryInterface& geom, size_t nPts)

Sample nPts points from a triangle mesh. Points are sampled uniformly at random from the underlying surface, independent of tesselation.

The return tuple holds:

  • The new PointCloud
  • A 3D position for each point
  • A SurfacePoint on the original mesh corresponding to each point

Note that in addition to the cloud and 3D positions, this routine returns a SurfacePoint associated with each point sample. The surface point is a handy class representing a location on the underlying mesh, and makes it easy to do things like interpolate data defined on the source mesh, or grab face normals, etc.