# Quantities

This page enumerates the surface geometry quantities available in geometry central.

Recall that these quantities are each associated with a geometry interface specifying what can be computed from the given input data. Instantiating a geometry from data, classes like `VertexPositionGeometry`

extend these interfaces and give access to all of the quantities therein. Quantities should usually be accessed via the managed caches, as in the example below.

#include "geometrycentral/surface/geometry.h" #include "geometrycentral/surface/meshio.h" using namespace geometrycentral::surface; // Load a mesh and geometry from file std::unique_ptr<HalfedgeMesh> mesh; std::unique_ptr<VertexPositionGeometry> positionGeometry; std::tie<mesh, positionGeometry> = loadMesh("spot.obj"); // For the sake of the example, use an interface type that offers // only the quantities which we will actually use below. IntrinsicGeometryInterface& geometry = *positionGeometry; // populate the quantity geometry.requireFaceAreas(); for(Face f : mesh->faces()) { // Managed array holding quantity double area = geometry.faceAreas[f]; // Immediate computation, computes directly from // input data without touching caches. // Generally discouraged but occasionally useful. area = positionGeometry->faceArea(f); }

## Indices

These quantities are defined for the base `BaseGeometryInterface`

, and will always be available. They are not actually geometric data, but it is convenient to cache the canonical arrays alongside geometric quantities, as they are often used in concert.

## vertex indices

##### vertex indices

A dense 0-based enumeration of vertices. Equivalent to the result of `HalfedgeMesh::getVertexIndices()`

.

**member:**`VertexData<size_t> BaseGeometryInterface::vertexIndices`

**require:**`void BaseGeometryInterface::requireVertexIndices()`

## halfedge indices

##### halfedge indices

A dense 0-based enumeration of halfedges. Equivalent to the result of `HalfedgeMesh::getHalfedgeIndices()`

.

**member:**`HalfedgeData<size_t> BaseGeometryInterface::halfedgeIndices`

**require:**`void BaseGeometryInterface::requireHalfedgeIndices()`

## corner indices

##### corner indices

A dense 0-based enumeration of corners. Equivalent to the result of `HalfedgeMesh::getCornerIndices()`

.

**member:**`CornerData<size_t> BaseGeometryInterface::cornerIndices`

**require:**`void BaseGeometryInterface::requireCornerIndices()`

## edge indices

##### edge indices

A dense 0-based enumeration of edges. Equivalent to the result of `HalfedgeMesh::getEdgeIndices()`

.

**member:**`EdgeData<size_t> BaseGeometryInterface::edgeIndices`

**require:**`void BaseGeometryInterface::requireEdgeIndices()`

## face indices

##### face indices

A dense 0-based enumeration of faces. Equivalent to the result of `HalfedgeMesh::getFaceIndices()`

.

**member:**`FaceData<size_t> BaseGeometryInterface::faceIndices`

**require:**`void BaseGeometryInterface::requireFaceIndices()`

## boundary loop indices

##### boundary loop indices

A dense 0-based enumeration of boundary loops. Equivalent to the result of `HalfedgeMesh::getBoundaryLoopIndices()`

.

**member:**`BoundaryLoopData<size_t> BaseGeometryInterface::boundaryLoopIndices`

**require:**`void BaseGeometryInterface::requireBoundaryLoopIndices()`

## Lengths, areas, and angles

These quantities are defined for any `IntrinsicGeometryInterface`

, which is the base class of all other geometry objects—they will always be available on any kind of geometry.

## edge length

##### edge length

The length of an edge in the mesh, as a non-negative real number.

**member:**`EdgeData<double> IntrinsicGeometryInterface::edgeLengths`

**require:**`void IntrinsicGeometryInterface::requireEdgeLengths()`

The inline immediate method can alternately be used to compute this value directly from input data for a single element:

**immediate:**`double VertexPositionGeometry::edgeLength(Edge e)`

## face area

##### face area

The area of a face, as a non-negative real number.

May be computed from edge lengths via Heron’s formula, or from embedded vertex positions with a cross product.

Only valid on triangular meshes.

**member:**`FaceData<double> IntrinsicGeometryInterface::faceAreas`

**require:**`void IntrinsicGeometryInterface::requireFaceAreas()`

The inline immediate method can alternately be used to compute this value directly from input data for a single element:

**immediate:**`double EdgeLengthGeometry::faceArea(Face f)`

**immediate:**`double VertexPositionGeometry::faceArea(Face f)`

## vertex dual area

##### vertex dual area

An area associated with each vertex, as a non-negative real number.

Only valid on triangular meshes.

Defined to be 1/3 the sum of all adjacent face areas. The sum of all vertex dual areas is equal to the usual surface area of the mesh.

**member:**`VertexData<double> IntrinsicGeometryInterface::vertexDualAreas`

**require:**`void IntrinsicGeometryInterface::requireVertexDualAreas()`

## corner angles

##### corner angles

The angle between incident edges at each corner of a mesh.

Only valid on triangular meshes.

**member:**`CornerData<double> IntrinsicGeometryInterface::cornerAngles`

**require:**`void IntrinsicGeometryInterface::requireCornerAngles()`

The inline immediate method can alternately be used to compute this value directly from input data for a single element:

**immediate:**`double EdgeLengthGeometry::cornerAngle(Corner c)`

**immediate:**`double VertexPositionGeometry::cornerAngle(Corner c)`

## vertex angle sum

##### vertex angle sum

The sum of corner angles around a vertex.

Only valid on triangular meshes.

**member:**`VertexData<double> IntrinsicGeometryInterface::vertexAngleSums`

**require:**`void IntrinsicGeometryInterface::requireVertexAngleSums()`

## corner scaled angles

##### corner scaled angles

The angle between incident edges at each corner of a mesh, linearly rescaled such that the angles around every vertex sum to 2 \pi. At boundary vertices, no scaling will be performed.

Only valid on triangular meshes.

**member:**`CornerData<double> IntrinsicGeometryInterface::cornerScaledAngles`

**require:**`void IntrinsicGeometryInterface::requireCornerScaledAngles()`

## vertex Gaussian curvature

##### vertex Gaussian curvature

The *Gaussian curvature* K at a vertex, defined via the angle defect K_v = 2 \pi - \sum \theta_i, where \sum \theta_i is the `vertexAngleSum`

as above.

Should be interpreted as an *integrated* Gaussian curvature, giving the total curvature in the neighborhood of the vertex. On a closed surface, the Gauss-Bonnet theorem tells us that the sum of these Gaussian curvatures will be a topological constant given by \sum_v K_v = 2 \pi \chi, where \chi is the Euler characteristic of the surface. On surfaces with boundary, the geodesic curvature of the boundary factors in.

Only valid on triangular meshes.

**member:**`VertexData<double> IntrinsicGeometryInterface::vertexGaussianCurvatures`

**require:**`void IntrinsicGeometryInterface::requireVertexGaussianCurvatures()`

## face Gaussian curvature

##### face Gaussian curvature

The *Gaussian curvature* K at a face, defined via the rescaled angle defect in the face K_f = \pi - \sum \tilde{\theta}_i, where \tilde{\theta}_i are the *rescaled* corner angles (as in `cornerScaledAngles`

) incident on the face.

Should be interpreted as an *integrated* Gaussian curvature, giving the total curvature inside of the face. A corresponding curvature-per-unit-area can be computed by dividing by the area of the face.

On a closed surface, the Gauss-Bonnet theorem tells us that the sum of these Gaussian curvatures will be a topological constant given by \sum_f K_f = 2 \pi \chi, where \chi is the Euler characteristic of the surface. On surfaces with boundary, the geodesic curvature of the boundary factors in.

Only valid on triangular meshes.

**member:**`FaceData<double> IntrinsicGeometryInterface::faceGaussianCurvatures`

**require:**`void IntrinsicGeometryInterface::requireFaceGaussianCurvatures()`

## halfedge cotan weight

##### halfedge cotan weight

The “cotangent weight” of an interior halfedge, defined as \frac{1}{2} \cot(\theta), where \theta is the corner angle opposite the halfedge. Defined to be 0 for exterior halfedges.

Can be computed directly from edge lengths, or more efficiently in an embedded triangle via \cot(\theta) = \frac{u \cdot v}{||u \times v||}, where u and v are the edge vectors emanating from the opposite corner.

Only valid on triangular meshes.

**member:**`HalfedgeData<double> IntrinsicGeometryInterface::halfedgeCotanWeights`

**require:**`void IntrinsicGeometryInterface::requireHalfedgeCotanWeights()`

**immediate:**`double EdgeLengthGeometry::halfedgeCotanWeight(Halfedge he)`

**immediate:**`double VertexPositionGeometry::halfedgeCotanWeight(Halfedge he)`

## edge cotan weight

##### edge cotan weight

The “cotangent weight” of an edge, defined as the sum of halfedge cotan weights for incident interior halfedges.

Only valid on triangular meshes.

**member:**`EdgeData<double> IntrinsicGeometryInterface::edgeCotanWeights`

**require:**`void IntrinsicGeometryInterface::requireEdgeCotanWeights()`

**immediate:**`double EdgeLengthGeometry::edgeCotanWeight(Edge e)`

**immediate:**`double VertexPositionGeometry::edgeCotanWeight(Edge e)`

## Tangent vectors and transport

These quantities are defined for any `IntrinsicGeometryInterface`

, which is the base class of all other geometry objects—they will always be available on any kind of geometry. Tangent vectors and transport are defined in terms of tangent spaces at faces and vertices, as defined below.

Recall that our `Vector2`

types obey the multiplication and division rules of complex arithmetic, and thus can be used to represent rotations. For instance, a 2D vector representing a rotation can be used to rotate another vector like:

Vector2 v = /* your vector */ Vector2 r = Vector2{std::cos(PI/4), std::sin(PI/4)}; // rotation by 45 degrees Vector2 vRot = r * v;

#### Face tangent spaces

To represent vectors that sit in flat mesh faces, we define a 2D coordinate frame tangent to each face. By default, this frame is aligned such that `face.halfedge()`

points along the x-axis (but subclasses might change this convention). All vectors in faces are then expressed via (x,y) `Vector2D`

coordinates in this frame. Crucially, this basis is well-defined even if the geometry does not have vertex positions.

See face tangent basis to convert these vectors to world coordinates (if your mesh has vertex positions).

## halfedge vectors in face

##### halfedge vectors in face

Vectors for each halfedge in the coordinate frame of the face in which they sit. See the description of face tangent spaces above for a definition.

Only valid on triangular meshes.

**member:**`HalfedgeData<Vector2> IntrinsicGeometryInterface::halfedgeVectorsInFace`

**require:**`void IntrinsicGeometryInterface::requireHalfedgeVectorsInFace()`

## transport vector across halfedge

##### transport vector across halfedge

Rotations which transport tangent vectors **across** a halfedge, rotating a vector from the tangent space of `halfedge.face()`

to the tangent space `halfedge.twin().face()`

.

Always a unit vector, which can be multiplied by any other vector to compute the rotation. (recall our `Vector2`

s multiply like complex numbers)

Only valid on triangular meshes. Not defined for halfedges (interior or exterior) incident on boundary edges, these boundary values are set to NaN so errors can be caught quickly.

**member:**`HalfedgeData<Vector2> IntrinsicGeometryInterface::transportVectorAcrossHalfedge`

**require:**`void IntrinsicGeometryInterface::requireTransportVectorAcrossHalfedge()`

Example usage:

geometry.requireTransportVectorAcrossHalfedge(); Face f = /* ... */; // a face of interest Vector2 myVec = /* ... */; // tangent vector in face f for(Halfedge he : f.adjacentHalfedges()) { Vertex neighborFace = he.twin().face(); Vector2 rot = geometry.transportVectorAcrossHalfedge[he]; Vector2 neighVec = rot * myVec; // now in the basis of neighborFace }

#### Vertex tangent spaces

To represent vectors that sit at mesh faces, we consider a polar coordinate frame at each vertex. This frame is defined by measuring angles according to the rescaled corner angles as in `cornerScaledAngles`

. By default, this frame is aligned such that `vertex.halfedge()`

points along the \phi=0 x-axis (but subclasses might change this convention). Of course, rather than using polar coordinates we can equivalently work in the corresponding Cartesian frame—tangent vectors at vertices are then expressed via (x,y) `Vector2D`

coordinates in this frame. Crucially, this basis does not require picking a vertex normal, and is well-defined even if the geometry does not have vertex positions.

See vertex tangent basis to convert these tangent vectors to world coordinates (if your mesh has vertex positions).

## halfedge vectors in vertex

##### halfedge vectors in vertex

Vectors for each halfedge in the coordinate frame of the vertex from which the emanate (in `halfedge.vertex()`

). See the description of vertex tangent spaces above for a definition.

Only valid on triangular meshes.

**member:**`HalfedgeData<Vector2> IntrinsicGeometryInterface::halfedgeVectorsInVertex`

**require:**`void IntrinsicGeometryInterface::requireHalfedgeVectorsInVertex()`

## transport vector along halfedge

##### transport vector along halfedge

Rotations which transport tangent vectors **along** a halfedge, rotating a vector from the tangent space of `halfedge.vertex()`

to the tangent space `halfedge.twin().vertex()`

.

Always a unit vector, which can be multiplied by any other vector to compute the rotation. (recall our `Vector2`

s multiply like complex numbers)

Only valid on triangular meshes.

**member:**`HalfedgeData<Vector2> IntrinsicGeometryInterface::transportVectorAlongHalfedge`

**require:**`void IntrinsicGeometryInterface::requireTransportVectorAlongHalfedge()`

Example usage:

geometry.requireTransportVectorAlongHalfedge(); Vertex v = /* ... */; // a vertex of interest Vector2 myVec = /* ... */; // tangent vector in vertex v for(Halfedge he : v.outgoingHalfedges()) { Vertex neighborVertex = he.twin().vertex(); Vector2 rot = geometry.transportVectorAlongHalfedge[he]; Vector2 neighVec = rot * myVec; // now in the basis of neighborVertex }

## Operators

These quantities are defined for any `IntrinsicGeometryInterface`

, which is the base class of all other geometry objects—they will always be available on any kind of geometry. A full explanation of these operators is beyond the scope of these docs; see these course notes for one introduction.

All operators are indexed over mesh elements according to the natural iteration order of the elements, or equivalently the indices from `HalfedgeMesh::getVertexIndices()`

(etc).

## cotangent Laplacian

##### cotangent laplacian

The discrete Laplace operator, discretized via cotangent weights.

A |V| \times |V| real matrix. Always symmetric and positive semi-definite. If and only the underlying geometry is *Delaunay*, the matrix will furthermore have all negative off-diagonal entries, satisfy a maximum principle, and be an *M-matrix*.

This is the *weak* Laplace operator, if we use it to evalutae \mathsf{y} \leftarrow \mathsf{L} \mathsf{x}, \mathsf{x} should hold *pointwise* quantities at vertices, and the result \mathsf{y} will contain *integrated* values of the result in the neighborhood of each vertex. If used to solve a Poisson problem, a mass matrix (such as the lumped or Galerkin mass matrices below) are likely necessary on the right hand side.

Only valid on triangular meshes.

**member:**`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::laplacian`

**require:**`void IntrinsicGeometryInterface::requireLaplacian()`

## vertex lumped mass matrix

##### vertex lumped mass matrix

A mass matrix at vertices, where vertex area is 1/3 the incident face areas as in `vertexDualAreas`

.

A |V| \times |V| real diagonal matrix. Generally less-accurate than the Galerkin mass matrix below, but can be easily inverted since it is a diagonal matrix.

Only valid on triangular meshes.

**member:**`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::vertexLumpedMassMatrix`

**require:**`void IntrinsicGeometryInterface::requireVertexLumpedMassMatrix()`

## vertex Galerkin mass matrix

##### vertex Galerkin mass matrix

A mass matrix at vertices, supported at all neighbors of a vertex via integration of piecewise-linear elements.

A |V| \times |V| real matrix. Generally more accurate than the lumped mass matrix above, should be preferred unless the mass matrix needs to be inverted.

Only valid on triangular meshes.

**member:**`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::vertexGalerkinMassMatrix`

**require:**`void IntrinsicGeometryInterface::requireVertexGalerkinMassMatrix()`

## vertex connection Laplacian

##### vertex connection Laplacian

A discrete connection Laplacian operator, which applies to vector fields defined in vertex tangent spaces. Essentially defined as the scalar cotangent Laplacian, augmented with rotations given by the rotations in `transportVectorAlongHalfedge`

; see The Vector Heat Method, Sec 5.3 for more explanation and definition.

A |V| \times |V| complex matrix. Always Hermitian, but positive semi-definite if and only the underlying geometry is *Delaunay*. This is a *weak* Laplace operator, the application of which outputs integrated values in vertex neighborhood.

Given a complex vector \mathsf{x} of tangent vectors at vertices, apply the operator by multiplying \mathsf{L} * \mathsf{x}.

Only valid on triangular meshes.

**member:**`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::vertexGalerkinMassMatrix`

**require:**`void IntrinsicGeometryInterface::requireVertexGalerkinMassMatrix()`

## DEC operators

##### DEC operators

These operators are the basic building blocks for *discrete exterior calculus* on surfaces.

**Note:** These quantities slightly deviate from the usual naming scheme for quantities. Rather than `requireD0()`

, `requireD1()`

, etc, there is a single `requireDECOperators()`

function which manages all 8 of the members listed below.

The following members are constructed:

`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::hodge0`

A |V| \times |V| diagonal matrix`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::hodge0Inverse`

A |V| \times |V| diagonal matrix`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::hodge1`

An |E| \times |E| diagonal matrix`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::hodge1Inverse`

An |E| \times |E| diagonal matrix`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::hodge2`

An |F| \times |F| diagonal matrix`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::hodge2Inverse`

An |F| \times |F| diagonal matrix`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::d0`

An |E| \times |V| matrix with \{-1, 0, 1\} entries`Eigen::SparseMatrix<double> IntrinsicGeometryInterface::d1`

An |F| \times |E| matrix with \{-1, 0, 1\} entries

Only valid on triangular meshes.

**require:**`void IntrinsicGeometryInterface::requireDECOperators()`

## Extrinsic angles

These quantities depend on extrinsic angles, but are still rotation-invariant, and independent of a particular embeddeding. They are defined for `ExtrinsicGeometryInterface`

and classes that extend it, including the `EmbeddedGeometryInterface`

one usually constructs from vertex positions. Currently there is no realization that constructs an `ExtrinsicGeometryInterface`

from input data which is not also an `EmbeddedGeometryInterface`

, but such a class could be implemented in the future.

## edge dihedral angle

##### edge dihedral angle

The dihedral angle at an edge, in radians. Defined to be the signed angle between the incident triangle normals: 0 if the edge is flat, positive at a convex edge, and negative at a nonconvex edge.

Only valid on triangular meshes.

**member:**`EdgeData<double> ExtrinsicGeometryInterface::edgeDihedralAngles`

**require:**`void ExtrinsicGeometryInterface::requireEdgeDihedralAngles()`

## vertex principal curvature direction

##### vertex principal curvature direction

A 2-symmetric tangent vector field at vertices. The direction corresponds to the first principal direction, and the magnitude is proportional to the squared difference of the 1st and 2nd principal curvatures (\kappa_1 - \kappa_2)^2 (so for instance, if a surface is flat and \kappa_1 \approx \kappa_2, the magnitude of the field will be near 0).

A formal description appears in section 6.1.2 of Globally Optimal Direction Fields

Only valid on triangular meshes.

**member:**`VertexData<Vector2> ExtrinsicGeometryInterface::vertexPrincipalCurvatureDirections`

**require:**`void ExtrinsicGeometryInterface::requireVertexPrincipalCurvatureDirections()`

## Embedded positions and normals

These quantities depend explicitly on an embedding in 3D space (better known as vertex positions). They are defined for `EmbeddedGeometryInterface`

(which is usually instantiated as a `VertexPositionGeometry`

). Don’t forget, `EmbeddedGeometryInterface`

extends the `IntrinsicGeometryInterface`

and `ExtrinsicGeometryInterface`

, so all of the quantities above are also accessible.

## vertex position

##### vertex position

Vertex positions in 3D.

*Note:* this member is distinct from the `VertexPositionGeometry::inputVertexPositions`

field. In the common case of a `VertexPositionGeometry`

, this member is a copy of the input vertex positions, provided for consistency and generality (one might define embedded surfaces with data other than vertex positions). If you want to update vertex positions on a mesh, you should modify `inputVertexPositions`

, not this quantity.

**member:**`VertexData<Vector3> EmbeddedGeometryInterface::vertexPositions`

**require:**`void EmbeddedGeometryInterface::requireVertexPositions()`

## face normal

##### face normal

A normal vector for each face.

**member:**`FaceData<Vector3> EmbeddedGeometryInterface::faceNormals`

**require:**`void EmbeddedGeometryInterface::requireFaceNormals()`

**immediate:**`Vector3 VertexPositionGeometry::faceNormal(Face f)`

## vertex normal

##### vertex normal

A normal vector for each vertex. Defined as the corner-angle weighted average of incident face normals.

**member:**`VertexData<Vector3> EmbeddedGeometryInterface::faceNormals`

**require:**`void EmbeddedGeometryInterface::requireFaceNormals()`

## face tangent basis

##### face tangent basis

A pair of x-axis and y-axis 3D basis vectors in world space, corresponding to the intrinsic tangent space for the face. Always orthogonal to the face normal.

Example:

HalfedgeMesh& mesh = /* ... */ VertexPositionGeometry& geometry = /* ... */; FaceData<Vector2> myTangentVectorField; geometry.requireFaceTangentBasis(); for(Face f : mesh.faces()) { Vector2 field = myTangentVectorField[f]; Vector3 basisX = geometry.faceTangentBasis[f]; Vector3 basisY = geometry.faceTangentBasis[f]; Vector3 fieldInWorldCoords = basisX * field.x + basisY * field.y; }

**member:**`FaceData<std::array<Vector3,2>> EmbeddedGeometryInterface::faceTangentBasis`

**require:**`void EmbeddedGeometryInterface::requireFaceTangentBasis()`

## vertex tangent basis

##### vertex tangent basis

A pair of x-axis and y-axis 3D basis vectors in world space, corresponding to the intrinsic tangent space for the vertex. Always orthogonal to the vertex normal.

Example:

HalfedgeMesh& mesh = /* ... */ VertexPositionGeometry& geometry = /* ... */; VertexData<Vector2> myTangentVectorField; geometry.requireFaceTangentBasis(); for(Vertex v : mesh.vertices()) { Vector2 field = myTangentVectorField[v]; Vector3 basisX = geometry.vertexTangentBasis[v]; Vector3 basisY = geometry.vertexTangentBasis[v]; Vector3 fieldInWorldCoords = basisX * field.x + basisY * field.y; }

**member:**`VertexData<std::array<Vector3,2>> EmbeddedGeometryInterface::vertexTangentBasis`

**require:**`void EmbeddedGeometryInterface::requireVertexTangentBasis()`